The Bifurcation and Decay of Solutions for Asymptotically Linear Elliptic Systems with Parameter
نویسندگان
چکیده
منابع مشابه
Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations
In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملbifurcation problem for biharmonic asymptotically linear elliptic equations
in this paper, we investigate the existence of positive solutions for the ellipticequation $delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $omega$ of $r^{n}$, $ngeq2$, with navier boundary conditions. we show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملMultiple Solutions for Asymptotically Linear Resonant Elliptic Problems
In this paper we establish the existence of multiple solutions for the semilinear elliptic problem (1.1) −∆u = g(x, u) in Ω, u = 0 on ∂Ω, where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, a function g: Ω×R→ R is of class C1 such that g(x, 0) = 0 and which is asymptotically linear at infinity. We considered both cases, resonant and nonresonant. We use critical groups to distinguish the c...
متن کاملDelay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems
In this paper, the problem of delay dependent robust asymptotically stable for uncertain linear time-variant system with multiple delays is investigated. A new delay-dependent stability sufficient condition is given by using the Lyapunov method, linear matrix inequality (LMI), parameterized first-order model transformation technique and transformation of the interval uncertainty in to the norm ...
متن کاملPositive Solutions and Global Bifurcation of Strongly Coupled Elliptic Systems
In this article, we study the existence of positive solutions for the coupled elliptic system −∆u = λ(f(u, v) + h1(x)) in Ω, −∆v = λ(g(u, v) + h2(x)) in Ω, u = v = 0 on ∂Ω, under certain conditions on f, g and allowing h1, h2 to be singular. We also consider the system −∆u = λ(a(x)u+ b(x)v + f1(v) + f2(u)) in Ω, −∆v = λ(b(x)u+ c(x)v + g1(u) + g2(v)) in Ω, u = v = 0 on ∂Ω, and prove a Rabinowitz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2019
ISSN: 2327-4352,2327-4379
DOI: 10.4236/jamp.2019.75083